AP Questions: Acids and Bases – in class chapter 15 review

1981 D

- (a) Predict whether a 0.10 molar solution of each of the salts below is acidic, neutral or basic.
- (b) For each of the solutions that is not neutral, write a balanced chemical equation for a reaction occurring with water that supports your prediction.

 $Al(NO_3)_3$

 K_2CO_3

NaHSO₄

NH₄Cl

1997 A

- The overall dissociation of oxalic acid, $H_2C_2O_4$, is represented below. The overall dissociation constant is also indicated. $H_2C_2O_4 <=> 2 H^+ + C_2O_4^{2-}$ $K = 3.78 \times 10^{-6}$
- (a) What volume of 0.400-molar NaOH is required to neutralize completely a 5.00x10⁻³-mole sample of pure oxalic acid?

(b) Give the equations representing the first and second dissociations of oxalic acid. Calculate the value of the first dissociation constant, *K*₂, is 6.40x10⁻⁵.

(c) To a 0.015-molar solution of oxalic acid, a strong acid is added until the pH is 0.5. Calculate the [C₂O₄²⁻] in the resulting solution. (Assume the change in volume is negligible.)

(d) Calculate the value of the equilibrium constant, *K*_b, for the reaction that occurs when solid Na₂C₂O₄ is dissolved in water.

1990 D

Give a brief explanation for each of the following.

- (a) For the diprotic acid H₂S, the first dissociation constant is larger than the second dissociation constant by about 10^5 (K₁ ~ 10^5 K₂).
- (b) In water, NaOH is a base but HOCl is an acid.
- (c) HCl and HI are equally strong acids in water but, in pure acetic acid, HI is a stronger acid than HCl.
- (d) When each is dissolved in water, HCl is a much stronger acid than HF.

1980 A

Methylamine CH₃NH₂, is a weak base that ionizes in solution as shown by the following equation.

$$CH_3NH_2 + H_2O \iff CH_3NH_3^+ + OH^-$$

(a) At 25°C the percentage ionization in a 0.160 molar solution of CH₃NH₂ is 4.7%. Calculate [OH⁻], [CH₃NH₃⁺], [CH₃NH₂], [H₃O⁺], and the pH of a 0.160 molar solution of CH₃NH₂ at 25°C

(b) Calculate the value for K_b , the ionization constant for CH_3NH_2 , at $25^{\circ}C$.